水晶球APP 高手云集的股票社区
下载、打开
X

推荐关注更多

邢星

邢 星 党员,国...


守望高新

资深人士


石建军

笔名:石天方。中国第一代投...


揭幕者

名博


洪榕

原上海大智慧执行总裁


小黎飞刀

黎仕禹,名博


启明

私募基金经理,职业投资人


李大霄

英大首席


桂浩明

申万证券研究所首席分析师


宋清辉

著名经济学家宋清辉官方账号...


banner

banner

钙钛矿电池产业链

价值投机小学生   / 2023-02-02 20:55 发布

太阳能光伏电池大体上可分为晶硅电池(多晶硅、单晶硅)与薄膜电池(非晶硅与化合物)。目前太阳能电池的技术革新路线围绕着降本增效,提高光电转换效率,因此也出现了两种电池的结合产品——异质结电池(晶体硅异质结太阳电池,简称HJT),该技术是在晶体硅上沉积非晶硅薄膜,综合了晶体硅电池与薄膜电池的优势,被认为是高转换效率硅基太阳能电池的重要发展方向之一。

根据CPIA数据,电池转换效率每提升1%,成本可下降7%,转化率提升发电成本下降。在大厂纷纷布局异质结电池的同时,钙钛矿电池(属于薄膜化合物电池)因为超高的转换效率近来也成为资本追逐的热点,尤其是钙钛矿与异质结电池的叠加,将成为最有想象力的光伏电池产品。

随着TOPCon、HJT、IBC等技术逐步成熟,逼近其光电转换效率理论极限,业界开始寻找新一代太阳能技术。

钙钛矿太阳能电池(perovskite solar cells)实验室光电转换效率迅猛增长,叠层电池的实验转换效率已经超越硅基太阳能技术。

钙钛矿带隙宽度可调,可制备高效叠层电池。钙钛矿可制备2结、3结及以上的叠层电池,其中2结叠层电池有钙钛矿-钙钛矿和钙钛矿-晶硅叠层电池两种,转换效率可提高到40%左右,3结及以上钙钛矿叠层电池的理论转换效率更是能达到50%左右。

通过与HJT叠层进一步提升光电转换效率,有望成为未来产业化的重点发展方向。

太阳能电池技术路线图:

图片资料来源:NREL

01

什么是钙钛矿

钙钛矿电池命名取自矿物学家Perovski的名字,结构可以用ABX3表示,在钙钛矿光伏中,A位通常为有机阳离子所占据(近年全无机也成为了研究热点),B位为铅离子Pb2+或亚锡离子Sn2+,而X位为卤素阴离子。若A位由两种阳离子混合,或X位由两种卤素阴离子占据时,则特称为混合型钙钛矿。

简而言之,钙钛矿材料不是指用狭义的“钙钛矿”做的材料,而是具有某种特定结构的材料之总称。

钙钛矿太阳能电池(PSCs)是利用钙钛矿结构材料作为吸光材料的太阳能电池,属于第三代高效薄膜电池的代表。

02

钙钛矿电池优势

钙钛矿电池具有高效率、低成本、高柔性等优势;电池材料成本低,结构简单,制造工艺流程短,生产能耗低,是未来光伏BIPV、电动汽车移动发电电源领域的明星材料。

性能好

2009年第一个钙钛矿电池被生产出来时,其转换效率仅有3.8%;十年后的2019年,这一数字就已经超过25%,至少在实验室达到了晶硅电池的水平,远胜于如碲化镉或铜铟镓硒等薄膜电池。

这种发展速度的背后,得益于钙钛矿材料远强于晶硅的吸光性能,能量转换过程中的极低能量损失,也与其覆盖光谱范围宽的特征有关。

钙钛矿的优势在于极高的灵活性。其作为一种化合物,配方可调,不但可以将其带隙尽可能地推向理想值,也可针对不同波长入射光设计不同钙钛矿层并彼此、或是与其他光伏材料叠加,从而捕获尽可能多的光子,实现高水平转化率。这也是有望推动钙钛矿电池突破肖克利-奎瑟极限的主要方式之一。而相比较之下,硅晶只能提纯,优化空间与手段均十分有限。

成本低

钙钛矿的低成本主要得益于两个方面,一是其预期的成本比较低,二是整条产业链的投资需求可能不是特别高。

一方面,制作金属卤化物钙钛矿所需原材料储量丰富,价格低廉,且前驱液的配制不涉及任何复杂工艺,对纯度要求不高,后续组件对加工环境要求也不高。与晶硅相比,钙钛矿不需99.9999%(即6N)级别以上的纯度,98%左右就已经可用;组件生产过程不需要晶硅电池的千度左右的加工温度,在生产过程中的能耗比较低,多数环节也不需要真空环境。

另一方面,钙钛矿电池由于光吸收能力强,对材料的用量非常低,对降低发电成本也有着很大优势。一般来说,钙钛矿电池的钙钛矿层只需做到300~500nm厚度,与除玻璃外的其它功能层合计能够实现1μm左右的厚度,而晶硅电池的硅片厚度目前处于前沿的厚度也有120μm。根据Oxford PV的计算,35kg钙钛矿的发电量就可以与7t硅(160μm厚度硅片)相当,降本空间十分可观。

最后的降本空间则来自产业链投资。由于钙钛矿制备简单,工艺流程比较短,有望在一座工厂内就实现从钙钛矿前驱液生产到最终的组件封装,上下游整合比较简单,而相比较之下晶硅电池工艺流程非常复杂,需要针对不同环节分别建厂,前期投资需求更高。

以1GW产能投资来对比,晶硅的硅料、硅片、电池、组件全部加起来,需要大约9亿、接近10亿元的投资规模,而钙钛矿1GW的产能投资,在达到一定成熟度后,约为5亿元左右,是晶硅的1/2。

钙钛矿电池材料:

资料来源:索比光伏网

03

产业链分析

钙钛矿电池产业链明显短于晶硅电池产业链。

据协鑫纳米的披露,100兆瓦的单一工厂,从玻璃、胶膜、靶材、化工原料进入,到组件成型,总共只需45分钟。

而对于晶硅来说,硅料、硅片、电池、组件需要四个以上不同工厂生产加工,倘若所有环节无缝对接,一片组件完工大概也要三天左右时间,用时差异很大。

资料来源:能镜

钙钛矿太阳能电池的组件生产流程:沉积透明导电层(TCO)、沉积电子传输层(ETL)、沉积钙钛矿层、沉积空穴传输层(HTL)、背电池制备、组件封装,较晶硅类太阳能电池制备大幅简化。

钙钛矿太阳能电池由多个功能薄膜叠加而成,所以制备钙钛矿太阳能电池的基本方法是在基底上一层层累置薄膜。

工艺包括薄膜制备、激光刻蚀、封装三大步,关键在实现大面积高质量薄膜制备。

图片资料来源:SOLOR MAGAZINE,浙商证券

04

市场格局

国际上著名的钙钛矿电池研发企业有牛津光伏(OxfordPV)和松下公司(Panasonic)等。

国内本土钙钛矿设备厂商订单部分已成功交付,生产厂商效率不断突破,融资进展顺利,已陆续布局中试线。

据PV-Tech不完全统计,2021年共有17家企业参与钙钛矿产业的投资/融资,共计6项投资项目,总投资/融资金额超85亿元。

国内PSCs生产主要厂商协鑫光电、纤纳光电、极电光能均已完成超亿元融资。

协鑫光电已投建全球首条100MW大面积组件中试线,作为目前最大尺寸钙钛矿电池记录的保持者,正致力于开发1m×2m大尺寸钙钛矿组件,在度电成本比晶硅更低的情况下,开启钙钛矿电池的商业化量产。

极电光能已开始建设150MW试验线,64cm钙钛矿光伏组件转换效率高达20.5%,稳态达20.1%。

纤纳光电七次刷新小组件世界纪录。

无限光能获数千万元天使轮融资,融资资金将用于大尺寸钙钛矿太阳能电池模组试验线的建设、扩充研发及量产技术团队,预计将在三季度完成试验线建设,年内实现大尺寸电池模组批量下线。

2020年上海光伏展上,协鑫、爱旭和赛维展出了钙钛矿叠层电池相关产品。

2021年安徽华晟完成了异质结/钙钛矿叠层电池中试开发;隆基绿能公布异质结-钙钛矿叠层电池专利,该叠层电池包括底电池、空穴传输层、钙钛矿吸收层以及透明导电层。泰州锦能新能源在湖南常德规划钙钛矿铜铟镓硒叠层电池项目,南京大学在全钙钛矿叠层电池效率高达26.4%,创造世界纪录。

05

电池设备

钙钛矿电池设备研发,助力钙钛矿电池成熟商用钙钛矿电池原料用量少,不稀缺,其关键技术壁垒将建立在设备端。

从设备端来看,钙钛矿太阳能电池的制备主要工艺为涂布及PVD,生产流程比晶硅类大幅简化,目前处于设备工艺验证阶段。

国产设备厂商德沪涂膜、众能光电、捷佳伟创、晟成光电(京山轻机子公司)、迈为股份帝尔激光等积极布局钙钛矿电池设备研发。

德沪涂膜深耕狭缝涂布设备,供应协鑫100MW量产线;众能光电已对外销售刮涂/涂布一体机、磁控溅射、热蒸发镀、ALD和激光刻蚀机等工艺单机以及光伏组件整线近100台套;2022年6月,晟成光伏钙钛矿电池团簇型多腔式蒸镀设备量产,成功应用多个客户端;2022年7月,捷佳伟创钙钛矿电池RPD设备出厂发货;迈为股份帝尔激光积极推进钙钛矿激光设备。

产业链主要企业还包括亚玛顿金辰股份罗博特科隆基绿能宁德时代东方日升通威股份晶科能源中来股份聆达股份金风科技杰普特拓日新能、无限光能、杭萧钢构等。

随着学术界不断刷新钙钛矿电池光电转换效率,初创企业如雨后春笋,传统巨头也准备加深护城河,钙钛矿电池已经来到商业化的前夜。各家企业着力解决大尺寸面积,高性能高稳定性钙钛矿电池组件制造问题。

06

钙钛矿电池缺陷

现阶段的钙钛矿电池寿命短,稳定性差,效率衰减过快,无法满足工业化生产的需要,一直是制约推广的最大障碍。

作为一种离子晶体材料,钙钛矿材料可谓是非常脆弱,不同材料与结构可能存在不耐高温、不耐光照、易水解、易氧化、易发生二次反应等缺陷。尽管近两年伴随着钙钛矿材料相关研究的长足进步,这种情况有所缓解,但电池整体衰减率相较于成熟的晶硅组件仍然太高,而且额外的保护措施,如保护涂层或掺杂等,还存在牺牲效率的可能。

07

最终答案:钙钛矿+异质结?

这种路线的基本原理非常简单,就是在HJT电池表面涂覆一层钙钛矿电池。而之所以选择异质结电池,则是由于基本的发电原理决定了钙钛矿只能与N型(掺磷)硅片,也就是HJT电池所用的硅片叠加,无法与P型(掺硼)硅片兼容。

这种结构可以最大限度的利用射入光:由于钙钛矿的可调节性,通过调整配方,使其吸收光谱中不能被硅晶电池利用的部分,而未被吸收的光则穿过钙钛矿层被硅吸收,最大限度吸收能量,将电池效率提高到极高水平——钙钛矿-HJT叠加电池的理论效率可达45%。

更妙的是,这种设计的钙钛矿电池只是整体效率的一部分,不必追求与晶硅电池旗鼓相当的转换效率,可将更多精力用于解决其它缺陷,无疑对产品研发更为友好。以及考虑到钙钛矿潜在的低成本生产的可能性,叠层电池和普通的HJT电池相比不会高出太多。